Morphine-activated opioid receptors elude desensitization by beta-arrestin.

نویسندگان

  • J L Whistler
  • M von Zastrow
چکیده

mu opioid receptors are targets of native opioid peptides and addictive analgesic drugs. A major clinical liability of opiate drugs is their ability to cause physiological tolerance. Individual opiates, such as morphine and etorphine, differ both in their ability to promote physiological tolerance and in their effects on receptor regulation by endocytosis. Here, we demonstrate that arrestins play a fundamental role in mediating this agonist-selective regulation and that morphine-activated mu receptors fail to undergo arrestin-dependent uncoupling from cognate G proteins. Thus, highly addictive opiate drugs elude a fundamental mode of physiological regulation that is mediated by agonist-specific interaction of opioid receptors with arrestins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced rewarding properties of morphine, but not cocaine, in beta(arrestin)-2 knock-out mice.

The reinforcing and psychomotor effects of morphine involve opiate stimulation of the dopaminergic system via activation of mu-opioid receptors (muOR). Both mu-opioid and dopamine receptors are members of the G-protein-coupled receptor (GPCR) family of proteins. GPCRs are known to undergo desensitization involving phosphorylation of the receptor and the subsequent binding of beta(arrestins), wh...

متن کامل

An opioid agonist that does not induce mu-opioid receptor--arrestin interactions or receptor internalization.

G protein-coupled receptor desensitization and trafficking are important regulators of opioid receptor signaling that can dictate overall drug responsiveness in vivo. Furthermore, different mu-opioid receptor (muOR) ligands can lead to varying degrees of receptor regulation, presumably because of distinct structural conformations conferred by agonist binding. For example, morphine binding produ...

متن کامل

Agonist-selective mechanisms of mu-opioid receptor desensitization in human embryonic kidney 293 cells.

The ability of two opioid agonists, [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) and morphine, to induce mu-opioid receptor (MOR) phosphorylation, desensitization, and internalization was examined in human embryonic kidney (HEK) 293 cells expressing rat MOR1 as well G protein-coupled inwardly rectifying potassium channel (GIRK) channel subunits. Both DAMGO and morphine activated GIRK cur...

متن کامل

Agonist induced homologous desensitization of mu-opioid receptors mediated by G protein-coupled receptor kinases is dependent on agonist efficacy.

Using Xenopus laevis oocytes coexpressing mammalian mu-opioid receptors (MORs), beta-adrenergic receptor kinase 2 (beta-ARK2) [also called G protein-coupled receptor kinase (GRK3)], and beta-arrestin 2 (beta-arr 2), we compared the rates of beta-ARK2 (GRK3)- and beta-arr 2-mediated homologous receptor desensitization produced by treatment with opioid agonists of different efficacies. The respon...

متن کامل

Differential mechanisms of morphine antinociceptive tolerance revealed in (beta)arrestin-2 knock-out mice.

Morphine induces antinociception by activating mu opioid receptors (muORs) in spinal and supraspinal regions of the CNS. (Beta)arrestin-2 (beta)arr2), a G-protein-coupled receptor-regulating protein, regulates the muOR in vivo. We have shown previously that mice lacking (beta)arr2 experience enhanced morphine-induced analgesia and do not become tolerant to morphine as determined in the hot-plat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 17  شماره 

صفحات  -

تاریخ انتشار 1998